SCIENCE, TECHNOLOGY AND TELECOMMUNICATIONS COMMITTEE

September 27, 2010

Jon Hawkins

Manager, Advanced Energy Technology and Strategy

PNMR

What is smart grid?

- Combining computer and network technology with the traditional utility grid
- Long term, how does this benefit customers?
 - Better reliability
 - Integration of more renewable energy
 - Better information to the customer
 - Integrating plug in vehicles
 - Reducing carbon footprint
 - Customer energy savings dependent on use

Publications available at http://www.oe.energy.gov/SmartGridIntroduction.htm

Electric Power Research Institute (EPRI) Demonstration Project

Project

- One of 11 EPRI Demonstration projects worldwide
- The project is foundational to ensure that all of the new equipment will work together correctly and securely
- The project helps us coordinate with many utilities to help decrease the risk of obsolescence
- Focused on integrating renewables like solar, wind, etc.
- EPRI provides no equipment

Solar Peak vs. System Peak

Intermittency and Impact of High Penetration

A single 1MW PV resource (distributed generation) can push a feeder into high penetration

Seconds

"High penetration" - Installed PV amounts to 15-20% of feeder peak load

Springerville, AZ 7 days at 1 minute resolution

DOE Project

Equipment

- 500 kW PV (energy for about 100 homes)
- 2 4 MWh Battery

Project

- Utility Scale
- One of two DOE ARRA funded projects in New Mexico
- Currently being designed
- Scheduled Construction 2011

PNM/DOE Smart Grid Demonstration Overview

The project targets using a large battery combined with a utility scale PV installation to:

- Smooth the fluctuations of the PV
- Store energy produced at the time the sun provides the best solar energy for use when the grid needs the energy the most
- Provide to the industry computer based models that will help us understand the behavior of storage with large renewable sites
- Provide improved algorithms to optimize control of the battery system – an industry need today

New Mexico Project Ties

- Sandia National Laboratories (design testing and evaluation) - project partner
- University of New Mexico (system computer models and analysis, battery control algorithm development) – project partner
- Northern New Mexico College (data analysis for the DOE project) – project partner
- Cameron Swinerton PV Contractor
- Schott Solar PV manufacturer

NEDO Commercial Building

Project

- Large amount customer side generation
- Sophisticated building energy management system
- Many collaborative research information sharing with this project, as well as Los Alamos project
- Part of the New Mexico Green Grid Initiative
- Goal to be able to self sustain for short periods of time

Equipment

- PV
- Battery
- Fuel Cell
- Gas Engine
- Building Energy Management System
- Thermal Storage (hot and chilled water)

Other Current Efforts

- Working on the National Institute of Standards and Technology's (NIST) Smart Grid Interoperability Panel (SGIP)
 - Interoperability
 - Cyber security
- Battery Functional Testing
 - Sandia National Labs Distributed Energy Testing Laboratory facility
 - 25kWh Li-Ion package
- Electric Vehicles
 - Working with Auto makers (GM, Nissan, and Ford)
 - Developing customer information
 - Looking at our system to ensure we can accommodate the increased loads
- Smart Meters in Texas
 - Required by the Texas Public Utility Commission
 - Allowed cost recovery for smart meters in Texas

Questions?

